
J. Fluid Mech. (1988), vol. 187, p p .  61-98 

Printed in  Great Britain 
61 

Direct simulation of a turbulent boundary layer up 
to R, = 1410 

By PHILIPPE R. SPALART 
NASA Ames Research Center, Moffett Field, CA 94035, USA 

(Received 12 December 1986 and in revised form 13 May 1987) 

The turbulent boundary layer on a flat plate, with zero pressure gradient, is 
simulated numerically a t  four stations between R, = 225 and R, = 1410. The three- 
dimensional time-dependent Navier-Stokes equations are solved using a spectral 
method with up to about lo‘ grid points. Periodic spanwise and streamwise 
conditions are applied, and a multiple-scale procedure is applied to approximate the 
slow streamwise growth of the boundary layer. The flow is studied, primarily, from 
a statistical point of view. The solutions are compared with experimental results. The 
scaling of the mean and turbulent quantities with Reynolds number is compared 
with accepted laws, and the significant deviations are documented. The turbulence 
a t  the highest Reynolds number is studied in detail. The spectra are compared with 
various theoretical models. Reynolds-stress budget data are provided for turbulence- 
model testing. 

1. Introduction 
The behaviour of turbulent boundary layers is far from being fully understood, 

and accurate predictions are difficult except in the simplest cases. Scaling laws have 
been proposed and validated by measurements, e.g. the ‘law of the wall’ and the 
‘defect law ’. Other laws, such as Kolmogorov’s, may apply but are not specific to wall- 
bounded flows. These laws express our understanding of the mechanics of turbulent 
flows. They are also constantly used to extrapolate results from one Reynolds 
number to the other. The Reynolds numbers encountered in practical applications 
are much higher than can be reached in laboratory experiments or, a fortiori, in direct 
numerical simulations. 

The theoretical foundation of the laws is often fragile; for instance several 
interpretations have been given for the ‘log law’. This is troublesome when one 
attempts to generalize the laws, either to more complex flows (e.g. pressure 
gradients) or to other quantities (e.g. higher statistical moments). The different 
interpretations, which agree in the simple case, may conflict in the general case. 
Often the available measurements are not accurate enough to indicate which theory 
is correct, and there is no consensus. Furthermore, the theories are usually unable to 
predict the value of the universal constants (e.g. the K&rm&n and Kolmogorov 
constants). For the theory of turbulent boundary layers, see in particular Coles 
(1956) and Townsend (1956, 1976). 

Another area of controversy is the behaviour of turbulent flows a t  low Reynolds 
numbers. The flow is turbulent in the sense that the fluctuations have a significant 
energy and have a strong effect on the mean flow through the Reynolds stresses they 
generate. On the other hand the range of scales is not sufficient for many widely-used 
theoretical arguments, which are based on the separation of large and small scales, 
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to  apply. Typical examples are the inertial range in the spectrum of small-scale 
turbulence and the log layer near a wall ; both properties vanish when the Reynolds 
number is too low. Unfortunately, all direct numerical simulations to date fall into 
the range of ‘ low-Reynolds-number turbulence ’. This makes the interpretation of 
the results delicate ; it is often hard to tell whether a result is close to the asymptotic 
high-Reynolds-number value, or even whether a finite asymptotic value exists. One 
needs to distinguish between ‘ Reynolds-number effects ’ and ‘ low-Reynolds-number 
effects ’. In  an effort to  achieve this distinction in the present study, particular care 
was taken to prevent spurious numerical effects. The simulations also cover a rather 
wide range of Reynolds numbers (a factor of 4), and the results suggest that in the 
R, = 1410 flow the low-Reynolds-number effects are weak. For low-Reynolds- 
number effects see in particular Coles (1962), Head & Bandyopadhyay (1981), 
Purtell, Klebanoff & Buckley (1981), Murlis, Tsai & Bradshaw (1982) and Erm, Smits 
& Joubert (1985). 

In addition to theoretical results like the scaling laws, fundamental turbulence 
research is expected to provide quantitative results for the calibration of turbulence 
models. These models are needed for the prediction of practical flows; their present 
accuracy leaves much room for improvement. From an accurate direct airnulation, 
one can extract all the quantities that  are involved in a turbulence model of any 
complexity. This provides a complete test of the model and leads to suggestions 
about how to improve it. Here one is making the assumption that an extrapolation 
is possible not only to higher Reynolds numbers, but also to more complex 
geometries. The present study focuses on conventional, statistical measures of 
turbulence. The modern concepts of coherent structures in turbulence are not 
ignored, but the open questions regarding the behaviour of quantities as simple as 
the mean velocity and the Reynolds stresses are urgent both from a theoretical point 
of view (scaling laws) and from a practical point of view (turbulence models). They 
are also more likely to have durable answers. 

Direct and large-eddy simulations of turbulence were reviewed by Rogallo & Moin 
(1984). In  the field of wall-bounded flows, Deardoff (1970) and Schumann (1975) 
studied turbulent channel flow by large-eddy simulation, without resolving the 
viscous wall region. Moin & Kim (1982) did a large-eddy simulation and could resolve 
the wall region ; they obtained close agreement with the well-known law of the wall. 
Moser & Moin (1984) performed a direct simulation of (curved) turbulent channel 
flow. In  contrast to large-eddy simulations, direct simulations do not include 
modelling of the eddies smaller than the grid spacing. This limits them to lower 
Reynolds numbers, but the results are thought to be more reliable, especially close 
to  the wall (Moser & Moin 1984). See also the work by Orszag’s group (Pelz et al. 
1985). These studies did not emphasize the Reynolds-number dependence of the 
turbulent quantities and relied heavily on wall scaling (based on the friction velocity 
u, and the kinematic viscosity v )  to present the results and compare them with 
experiments. 

An earlier version of the method used here was applied to equilibrium boundary 
layers with pressure gradients by Spalart & Leonard (1985) and to  sink-flow 
boundary layers by Spalart (1986b). In both studies the flows were assumed, locally, 
to  satisfy similarity properties both in the wall region (law of the wall) and in the 
outer region (defect law). These assumptions were involved in the multiple-scale 
approximation that accounted for the slow streamwise evolution of the flow. Self- 
similarity was assumed both for the mean velocity and for the Reynolds stresses. 
These assumptions are reasonable, but are strongly justified only in the case of the 



Direct simulation of a turbulent boundary layer 63 

sink flow. In  fact when Spalart & Leonard compared simulations (with zero pressure 
gradient) a t  different Reynolds numbers, i t  was found that some of the scaling laws 
were not satisfied. Thus the study as a whole was inconsistent, in that the global 
behaviour of the flow negated the assumptions that were made locally. The 
deviations from the scaling laws were especially striking near the wall, where the 
terms which depend on the similarity assumptions are very weak. Therefore it was 
expected that even if these terms were altered to remove the inconsistency, the 
results would not change significantly and the deviations would remain. 

This finding motivated a generalization of the approach and a systematic, 
controlled study of the Reynolds-number effects. The new approach makes no 
assumption about the behaviour of the dependent variables. The outer and inner 
lengthscales S and v / u ,  are still used to define a transformation of the independent 
variable in the direction normal to the wall, but as this is a much weaker assumption 
it can only have an indirect effect on the results. The procedure will be described in 
52.3.  Although it has much in common with the procedures used by Spalart & 
Leonard (1985) and Spalart (19863) a self-contained account of the method will be 
given. 

The numerical method was described in detail by Spalart (1986a). It is fully 
spectral in space, based on Fourier series in the directions parallel to the plate and 
an exponential mapping with Jacobi polynomials in the normal, semi-infinite 
direction. The time integration is second-order accurate and hybrid; i t  uses a 
low-storage Runge-Kutta scheme (Wray 1987) for the transport term and the 
Crank-Nicolson scheme for the Stokes terms. If Reynolds-number effects are to be 
studied by numerical simulation, i t  is essential to ensure that the different cases arc 
not run with (effectively) different resolution, which could induce spurious variations. 
A similar problem can occur in experiments, for instance if a probe of fixed size is 
used while an increase in the Reynolds number decreases the scales of the 
turbulence. 

There are two aspects to the question of resolution. One is the size of the domain 
in the directions parallel to the wall (or equivalently the smallest wavenumber). It 
was decided to  keep the ratio of these dimensions t o  the displacement thickness S* 
the same in all the simulations. Thus if there is an effect of the confinement of the flow 
inside a finite domain, the effect will be as independent of Reynolds number as 
possible. The displacement thickness is an appropriate macroscale of the flow and, 
with the present method, happens to  be easier to control than the boundary-layer 
thickness 6 or the momentum thickness 0. The lengthscale yo of the exponential 
mapping (Spalart 1 9 8 6 ~ )  is also kept a t  a constant multiple of S*. The other aspect 
is of course the grid spacing (or equivalently the largest wavenumber). In  this case 
the wall region is the most sensitive and it was decided that the grid spacing should 
be fixed, in wall units. Thus the effects of numerical truncation will be as independent 
of Reynolds number as possible. 

2. Governing equations 
2.1. Multiple-scale approximation 

The overall goal is to obtain a set of equations which, when solved with periodic 
conditions in the streamwise (x) direction, can provide a good approximation to  the 
local state of a boundary layer that has a slow spatial development. The incentives 
to  use periodic conditions are both numerical (the high accuracy of Fourier series) 
and physical (no need to provide turbulent inflow conditions, improved statistical 
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FIGURE 1. Sketch of a spatially-developing boundary layer. (a)  Geometry. +, velocity vectors; 
-, streamlines ; ---, coordinate lines. ( b )  Turbulent signal. 

sample). The idea is to use the fact that both the thickness of the boundary layer and 
the energy level of the turbulence vary slowly as functions of x. The final product is 
a set of small ‘growth terms’ that are added to the usual Navier-Stokes equations. 

Figure 1 ( a )  is a sketch of the flow, with the normal direction (y) enlarged about 10 
times. The velocity profiles a t  two stations illustrate the thickening of the boundary 
layer. The solid lines represent streamlines of the mean velocity field, which are at 
a shallow angle to the wall. The dashed lines represent a coordinate system that is 
‘fitted’ to the boundary layer. The periodic conditions will be applied along these 
lines. A new coordinate 7 (which is constant along a dashed line) replaces y as the 
normal coordinate ; it is chosen so that the boundary-layer thickness and the viscous- 
sublayer thickness are independent of x. In the sink flow the coordinate lines were 
obvious : they were the rays converging into the sink. In  the general case the choice 
is more arbitrary and will be discussed in ss2.2 and 2.3. In  terms of geometry, the key 
quantity is the slope X of the coordinate lines. In  the constant-pressure boundary 
layer, as indicated in figure 1 ( a ) ,  X is positive and small, although larger than the 
slope of the streamlines. 

The dependent variables also require a change of variables before periodic 
conditions are applied. Figure 1 ( b )  is a sketch of a turbulent velocity component, for 
instance u, us. x (at  fixed values of 9, z and t ) .  The signal displays fast, short-scale 
fluctuations as well as a slow variation of the mean and of the intensity of the 
fluctuations with x. This makes periodic conditions inadequate. However if one 
writes u as the combination 

4 x 3  992, t )  = U ( x ,  9 )  + A h  7) U,(X> 7, z ,  t ) ,  ( 1 )  

where U is the mean (over the spanwise direction z and time t )  and the ‘amplitude 
function’ A is proportional to the r.m.s. of the fluctuations, then the normalized 
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signal up has zero mean and its r.m.s. is independent of x. This makes periodic 
conditions for up appear tolerable although not fully justified. They are not fully 
justified because the length- and timescales of the signal may vary with x, so that 
even up is not a truly homogeneous signal. However in a boundary layer, the 
variation of these scales is presumed to be slow and to have a weaker effect than the 
variation of the mean and r.m.s. 

Differentiating ( 1 )  with respect to x yields 

au au au aA 
- = -++-+-up. 
ax ax ax ax 

Since the variation of U and A with x is assumed to be slow, the first and third terms 
appear as small corrections, 'slow derivatives ', denoted by U ,  and u,. The second 
term, the usual or 'fast '  derivative aup/ax, is denoted by u,. The formulae for U ,  and 
u, will be discussed in $2.3. 

2.2. Short-scale analysis 
The short-scale analysis includes the transformation of the Navier-Stokes equations 
from the Cartesian system of coordinates (x, y, z )  to the non-Cartesian system (x, 7, 
z), the inclusion of the slow derivatives, and the Taylor expansion of the resulting 
equations. The metric coefficients S and T of the coordinate transformation are 
defined by 

8 has a clear physical meaning : it is the slope made by the new coordinate lines with 
the wall. The meanings of 7 and T are not as clear, since they depend on a 
normalization. I n  the end the normalization will be chosen so that, a t  the value of 
x being considered, 7 and y coincide, giving T = 1. Until then the identity T, = S, will 
be used to express the results in terms of S as much as possible. 

Let (u*, v*, w*) be the Cartesian velocity components. The contravariant 
velocity components (6, v", 8) associated with (x, 7, z )  are used to preserve the form of 
the transport terms, that is to have u* 8, + v* aY + w* a, = .ii a, + v"a, + 8 a,. They are 
defined by 8 = w* and 

(;v") = (-'s ;)(::). (4) 

The continuity condition (u,* + v,* + w: = 0) becomes 

S T  
T T  

QX+v",+8,+4i+"v""= 0. 

The x-momentum equation becomes 

S 
T 

Q, + cc, + v"cq + 8cz = -p,  + -p, 

where p is the kinematic pressure. Similar terms appear for the other components. 
Now that all the derivatives have been taken, the normalization can be applied, 
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which will simplify the equations : 7 is identified to y and T is set to 1. The equations 
become 

dx+6,+G,+S,d = 0, (6a )  

Q, + QG, + GG, + GQ, 

= -p, +Spy + v(GXx + (1 +S2)  d,, - 2Sd,, + (288, -8,) Q, + Qcz) .  (6 b )  

Let us proceed with the Taylor expansion of the equations. The velocity and 
pressure are split into mean and fluctuating quantities : e.g. Q = U + u, and the fast 
and slow derivatives defined by (2) are introduced. The friction velocity u,/U, is a 
small quantity and tends to 0 (although slowly) as the Reynolds number tends to 00. 

Let u J U ,  be of order E .  The velocity fluctuations u/U,, w/U, and w/U, are of the 
same order. The pressure fluctuations p/UZ, are of order 2. The momentum equation 
(dO/dx = ug/UL) and the fact that 8 is of the order of ES show that the rate of change 
of S in the x-direction is of order E .  S and SA,/A are of order E. All of the slow 
derivatives like U ,  and ux are an order of magnitude smaller than the quantity 
itself, whereas the fast derivatives are of the same order as the quantity (taking S as 
the lengthscale). For instance u / U ,  = O ( E ) ,  u,S/U, = O ( E ) ,  u x S / U ,  = O(e2) .  The 
Taylor expansion of (6) up to order 2 is as follows 

v,+[u,+~,u] = 0, (7 a)  

u,+w,+w,+[u,+S,u] = 0, (7 b )  

= -yx - [P,] + v( u,, + V2u) ,  (7 c )  

( 7 4  

(7 e )  

This is the set of equations that is integrated in time to obtain the turbulent fields. 
For each station of the boundary layer, a separate simulation is done using (7) with 
periodic conditions in x and z. 

Note that the corrections in the viscous terms have been neglected. The mean and 
fluctuating components of the continuity equation are separated for clarity ( (7  a) and 
( 7 b ) )  and all three components of the momentum equation are shown. The U ,  term 
in (7c) allows the flow to equilibrate, and vanishes once equilibrium has been reached. 
These equations are the Navier-Stokes equations, as usually written for a shear flow 
that is homogeneous in x and z, with the addition of ‘growth terms’ that are 
indicated by square brackets and can be interpreted as follows. The term U ,  + S, U 
in the continuity equation ( 7 a )  is a consequence of the streamwise evolution of the 
mean-velocity profile. In  the sink flow, it was identically zero (Spalart 1986b). In the 
flat-plate flow, it is zero in the wall layer and positive farther from the wall, so that 
V becomes negative : non-turbulent fluid is entrained into the boundary layer (in the 
new coordinates the dashed lines of figure 1(a) are parallel and the streamlines are 
directed towards the wall). The meaning of the ux + 8, u term in (7 b )  is not as clear 
(it was zero in the sink flow as well). Actually the numerical method used, which 
employs basis functions that satisfy u, + w, + w, = 0 (causing the pressure term to be 
eliminated), does not allow the u, +X, u term to be included. Thus the expansion is 
not fully second-order accurate in E ,  but this effect is not thought to be very 
significant. In the momentum equation, the terms UU,  + V U ,  and Px are mean 
momentum-transport and pressure terms. The term Px is independent of y, to order 

U ,  +u, + (U + u) u,+ W(U +u), + wu,+ [UU,  + VU, + uu, + u, u+ Vu,] 

wUt + ( U + u )  w,+ owy + WZI, + [UW, + ( VY+2US,) w + VW,] = -p ,  + vv2w, 
wt + (U + u)  w, + ww, + ww, + [Uw, + Vw,] = -p ,  + vv2w. 
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e3,  and satisfies Bernoulli's equation in the freestream : for large y, U U ,  = - P, (in 
the present application, P, = 0). The terms U u ,  + Vu,, Uv, + Vv, and Uw, + Vw, 
represent transport, or advection, of the turbulence by the mean flow. The term 
2US, v in ( 7 d ) ,  which is due to the expansion of the coordinate lines, seems harder to 
interpret . 

Finally, the terms U ,  u and V,v arise from the straining of the turbulence by the 
mean flow. However it would be misleading to imply that straining is accurately 
represented, becausc the numerical domain does not become deformed in time as in, 
for instance, Rogallo's homogeneous-turbulence simulations ( 198 1). This weakness of 
the present approach is, ultimately, due to the fact that the approximation in (1) was 
based primarily on energy considerations, with little consideration of structural 
aspects. If one examines the influence of S (which is arbitrary to some extent), one 
finds that the mean growth term UU,+ V U ,  is not sensitive to S, because of the 
definition of the contravariant velocities i12: and v" (if S changes, the quantities UU,  
and V U v  change, but their sum remains equal to U*U,*+V*U,*). For the 
fluctuations the situation is more subtle. It can be shown that the global effect on a 
Reynolds stress such as (u2)  behaves like the effect on the mean flow, that is, a 
change in S causes only a transfer between the terms U (u'), and V (u2)>,. However, 
locally the value of S does matter because ux and u, do not have the same phase. 

2.3. Long-scale analysis 

The long-scale analysis provides the values of the quantities S, U,, u,, vx and w, 
that enter the growth terms in (7). In the method used for sink-flow boundary layers 
(Spalart 1986b) the long-scale analysis was simple; the flow was assumed to  be self- 
similar both in terms of its lengthscales (all proportional to the distance X, from the 
sink) and its velocity scales (all proportional to the edge velocity &/X,). Thus one 
had thd equations S = - y/X,, U ,  = U / X , ,  u, = u / X , ,  etc. 

In more general flows one has to consider two lengthscales in the y-direction : the 
wall length scale v /u ,  and the boundary-layer thickness 6. There are also two velocity 
scales : the friction velocity u, and the edge velocity U,. Spalart & Leonard's (1985) 
study of boundary layers with pressure gradients was restricted to ' equilibrium ' 
boundary layers in the sense used by Clauser (1954) : they satisfied the defect law. 
The wall region was also assumed to obey the law of the wall. The coordinate 7 was 
(a function of) yf in the wall region and (a function of) y/6 in the outer region; a 
smooth blending between the two regions was made. The fluctuations were assumed 
to scale with u, both in the wall region (for constant y') and in the outer region (for 
constant y/S). This assumption was consistent with the assumption made for the 
mean velocity and with the literature. 

Spalart & Leonard's analysis has several shortcomings. It is limited to 
'equilibrium' boundary layers, which are rare in practice. It was also shown by Coles 
(1962) that even in the simplest and best explored of equilibrium boundary layers, 
the constant-pressure flow, the defect law is not satisfied a t  low Reynolds numbers 
such as the one used for the simulations. Also, the overlap of a law of the wall and 
an outer-layer law requires a log layer in the mean velocity and a constant layer in 
the Reynolds stresses. The log layer was obtained by Spalart & Leonard, but the 
constant-stress layer was not. Although this could be a low-Reynolds-number effect, 
it is hard to explain why the log layer was well indicated a t  the same Reynolds 
number. Finally, simulations conducted at different Reynolds numbers yielded 
results in which the Reynolds stresses, near the wall, did not scale with u, and y'. 
Instead they showed a consistent tendency to rise with the Reynolds number. 
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These various shortcomings indicated that (except for the sink flow) a valid study 
of boundary layers a t  low Reynolds numbers or with general pressure gradients 
should do away, a t  least, with the assumptions of a defect law and of the wall scaling 
of the Reynolds stresses. This led to the idea of obtaining the information needed to 
prescribe S, U,, and so on, not from some assumptions but directly by conducting 
simulations a t  several stations of the same boundary layer. The X-derivatives are 
now obtained by taking differences between the different stations. This approach is 
more general and conceptually simpler. On the other hand it is more expensive, since 
several simulations have to be conducted. Also, the simulation of any one station 
requires upstream information. Thus one loses one of the advantages of the original 
procedure ; however, the upstream information needed is reduced to mean-velocity 
and Reynolds-stress profiles. Time-dependent turbulent inflow values are not 
needed. 

The first task is to define the coordinate lines to obtain S. The quantities y+, near 
the wall, and y/6, away from the wall, appear as 'natural ' coordinates in the sense 
that they minimize the non-homogeneity along a constant-7 line, thus making the 
growth terms as small as possible. The new coordinate 7 is defined explicitly as a 
weighted average of y+ and y/S: 

where y: = 15, ys/S = 0.3, yz = (y, y3)i and p = 5/10g,,(y3/y,). This rather arbitrary 
definition was chosen to ensure that 7 is a monotonic function of y, is equal to 
y+ for small y and to y/S for large y, and makes a smooth transition between the two. 
Note that a nonlinear formula was needed because v / u ,  and 6 do not grow a t  the same 
rate in x. 

Now that 7 is defined, if one knows the state of the flow a t  two values of X, e.g. 
X, and X,, one computes an approximation to S = ay/aX by taking differences: 

Typically the flow a t  the upstream station, X,, is known from a previous simulation 
and the flow a t  the downstream station, X,, is being computed. Similarly U ,  is 
approximated by [U(X,, r )  - U(X,, 7)]/(Xz -XI).  For u, only the ratio A,/A is 
needed and it is given by [u,,,(X,, 7)/urms(Xl, 7)  - l]/(X, -XI) (recall that the role 
of A in ( I )  was to be proportional to the r.m.s. of the fluctuations). The formula for 
w is the same. Finally, the formula for v is slightly different: A,/A z [vrm,(Xz, 7)/ 
Z),. ,~(X,,  7)-  l]/(X2-Xl)-Sy. The -S,  term is introduced by the normalization of 
5 in (4). This cancels half of the 2US,v term of (7d) .  The only information one needs 
at X, is U ,  urms, v,,, and w,,, as a function of y. 

3. Results 
3.1. Choice of the parameters 

The periods in the x- and z-directions are A x  = 1006* and A,  = 256". The spacing 
between collocation points, in wall units, is Ax+ % 20, with Az+ z 6.7, and may vary 
by k5Y0 from one case to another. I n  the y-direction the number of points is 
adjusted so that there are 10 (non-uniformly spaced) points within 9 wall units of the 
wall. As a result of these requirements and of the need to factorize the length of the 
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FIGURE 2. Resolution check at R,, = 500. ---, coarse resolution; __ , all other cases. 

fast Fourier transforms, the number of points in the x-, y- and z-directions is 
(128 x 50 x 96) at R,, = 500, (256 x 64 x 192) a t  R,, = 1000 and (432 x 80 x 320) a t  
R,, = 2000. This last case has about 1.1 x lo7 grid points, so 3.3 x lo6 modes (using 
the $ rule in each direction, Spalart 1 9 8 6 ~ ) .  The timestep is adjusted so that the 
maximum local CFL number (see Spalart 1986a for the exact definition) is 2. As a 
result the non-dimensional timestep AtU,/S* is about 0.3, 0.14 and 0.07 a t  R,, = 
500, 1000 and 2000 respectively. In wall units, the non-dimensional timestep Atu,2/v 
is about 0.43, 0.32 and 0.29 respectively. The time sample for the statistics is of the 
order of 200S*/U, (larger samples would help improve the smoothness of the spectra, 
but would be very expensive to generate). The sample can be compared with a 
typical timescale of the turbulence, the ratio of its energy to its production rate. Near 
the wall this timescale is about 15 wall time units, so about 3S*/U,  (at R,, = 1000). 
In that sense, in a time of 2OOS*/U, the turbulent energy is dissipated and 
regenerated 67 times. There is little doubt that the turbulence has reached a 
statistically steady state, and could be maintained indefinitely. 

These parameter values were chosen by monitoring the spectra, both a t  their 
lower end (to choose the period) and a t  their upper end (to choose the grid spacing). 
Alternatively, the two-point correlations can be used (Spalart 1986a). Two tests were 
also performed for the (relatively inexpensive) case R,, = 500 to further validate the 
choice of the parameters. In the first test, the values of A ,  and A ,  were doubled, then 
halved, and the grid spacing left unchanged (thus the number of points in x and z also 
changed by a factor of 2). In  the second test, the simulation was rerun with both 
much finer, and then much coarser resolution (the number of points in x and z was 
doubled, then halved ; the number of points in y was varied from its basic value of 
50 to 64, then 40). The timestep, being regulated by the value of the CFL number, 
is also reduced when finer resolution is used so that both the spatial and temporal 
errors are reduced. 

Figure 2 displays the sensitivity of the mean-velocity profile to the numerical 
parameters. The difference between the basic simulation and the ‘improved ’ ones 
(larger periods or finer resolution) is small. This figure allows one to estimate the 
remaining numerical uncertainty. The simulation with reduced periods gives results 
very close to the basic simulation, which indicates that the periods that were chosen 
to obtain satisfactory long-range behaviour (low correlations a t  a distance $A) are 
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more than sufficient to obtain a satisfactory velocity profile. On the other hand, the 
simulation with coarse resolution gives significantly different results, including a 
much higher value ofu,/U,. Thus the resolution chosen appears to be adequate, but 
not wasteful. The sensitivity of other statistical quantities up to third-order 
moments was found to be small. For fourth-order moments, the u- and w- 
components showed a moderate sensitivity, but the flatness factor of v was very 
sensitive near the wall : it  varied from about 4 with coarse resolution to over 30 with 
fine resolution. Away from the wall, the profiles agreed well again, even the v- 
flatness. Thus one should consider statistics for moments beyond third order with 
some caution, a t  least near the wall. 

3.2. Streurnwise evolution of the mean $ow 
Four stations of the boundary layer were simulated, with R,, = 400, 500, 1000 and 
2000 respectively. The values of R, are approximately 225, 300, 670 and 1410. 
Detailed results from the first station, R,, = 400, will not be shown. It was computed 
using the approach of Spalart & Leonard (1985). While this approach was shown to 
have some deficiencies, it is satisfactory for the generation of upstream data. 

The possibility of obtaining turbulence a t  R, = 225 is in disagreement with 
Preston’s (1957) often-quoted estimate that the lowest Reynolds number at  which 
‘fully developed turbulent flow’ can occur is 320. It is based on a comparison 
between pipe-flow and boundary-layer data, and on the rather abstract argument 
that when the length of the log layer is reduced to zero (because the inner and outer 
regions overlap), fully developed turbulence cannot exist. One may need to 
distinguish between the concepts of ‘fully developed ’ turbulence and of ‘sustained ’ 
turbulence. Indeed, in the present results for R, below about 600, a normal log layer 
is not observed (see below). However, the turbulence was sustained. Bandyopadhyay 
(1987) was able to generate a turbulent boundary layer at  R, = 285. A comparison 
with sink-flow boundary layers may also be useful. When these flows were studied 
with the present method (Spalart 19863) the threshold Reynolds number was found 
to be R, = 330, which is in good agreement with experimental data. In sink-flow 
simulations, the turbulence quickly collapsed when the Reynolds number was 
lowered to below 330; thus the method seems reliable. The sink flow has a strong 
favourable pressure gradient, which has a stabilizing effect (it is known to inhibit 
transition and to induce relaminarization). When this stabilizing effect is removed, 
turbulence should be sustained a t  lower Reynolds numbers. Curiously, Preston’s 
argument about the overlap of the inner and outer region predicts the opposite 
effect : the limit would be lower with a favourable pressure gradient. Thus Preston’s 
estimate for the sink flow would be significantly lower than the value 330, which has 
now been obtained by two independent approaches. 

Figure 3 shows the growth of the displacement- and momentum thicknesses in the 
streamwise direction. Since the origin is arbitrary in the x-direction, the notation 
AR, is used to represent the Reynolds number based on the distance from the first 
station and on U,. The scale is enlarged in the normal direction. The momentum- 
balance equation, d(R,)/d(R,) = $+, is checked by drawing segments centred on the 
R, points with a slope of $cf. They show that the balance equation is satisfied (with 
the derivative a t  X, approximated as in (9)) and that the spacing between stations is 
small enough. In figure 4 the dependence of the friction coefficient cf and the shape 
factor H = S*/8 on RB is shown ; it  compares well with experimental data (Coles 1962 ; 
Purtell et ak. 1981 ; Murlis et al. 1982 ; Erm et al. 1985). However, as R, increases, the 
cf decreases slightly less than the experiments show. Figure 2 suggests that the 
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uncertainty on UmIu ,  is of the order of k0.25. This translates into f0.12 for 103c,, 
which is of the same order as the differences in figure 4 ( a )  (for R, = 670 and up). The 
R, = 1410 simulation was continued with slightly improved resolution (96 point,s in 
y instead of 80) ; the cf showed no tendency to decrease. The error could also be caused 
by effects neglected in the multiple-scale approximation ; unfortunately it does not 
seem possible to estimate these effects quantitatively. 

The mean velocity profiles are plotted in figure 5 ( a )  using wall variables. All the 
averages are taken in x, z and t .  Experimental results a t  R, = 617 (Erm et al. 1985) 
and 1368 (Murlis et al. 1982) are also plotted and may be compared with the present 
results a t  R, = 670 and 1410. For R, equal to 670 and larger, the profiles closely 
follow the logarithmic law U+ = log ( y f ) /~+C,  with constants K = 0.41 and C = 5 ,  
starting a t  y+ z 30. For R, = 300, the curve is significantly higher in that region; 
however it is still rather straight. This raises the question of exactly how the log layer 
is defined. 

A logarithmic layer is a region in which the quantity dU/d (logy), or ydUldy, is 
constant and equal to U J K .  In  high-Reynolds-number boundary layers, this region 
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is long and bounded on both sides by regions in which ydU/dy takes values larger 
than the constant. Thus the logarithmic layer and the value of u,/K can be found by 
seeking the minimum of ydU/dy ‘us. y (this amounts to seeking the inflexion point 
in figure 5a) .  The value of C can then be determined a t  the same position, This seems 
to be the only rigorous definition. The usual procedure of adjusting K and C until the 
straight line fits the velocity profile ‘well’ in the coordinates of figure 5 ( a )  is not 
exempt from arbitrariness. Of course, the procedure based on ydU/dy is more 
sensitive to noise, and will yield an erroneously low value of u,/K for noisy data (C 
may then be overpredicted). Thus it may not be applicable to experimental data. 
However, in numerical results, the profiles of y+dU+/dy+ show a low level of noise 
once the sample is sufficient, as shown in figure 5(b) .  Note that if the value of K is 
assumed to be known, one can deduce the value of u, (and hence the wall stress) using 
only measurements in the log layer. This is essentially the method of the ‘Clauser 
plot’ (Clauser 1954). 

When the Reynolds number is low, y dU/dy still exhibits a local minimum, but a 
narrow one (figure 5 b ) .  Two interpretations are possible. The first is an ‘infinitely 
short ’ log layer. Figure 5 (b)  shows that at R, = 300, this log layer has a low value of 
about 0.315 for the ‘apparent Karman constant ’ K’ .  This is reminiscent of Simpson’s 
interpretation (1970), although Simpson made deductions from measurements taken 
in the outer region of the flow. He proposed the law K’ = ~ ~ ( R ~ / 6 0 0 0 ) ~  with K~ the 
asymptotic value, about 0.40. This yields 0.28, 0.31 and 0.34 for our three cases. The 
present results indicate values of 0.32, 0.38 and 0.40 for K’. They show a smaller 
departure of K’ from K,,, and the value of K’ is essentially unaffected down to R, % 670. 
The apparent values C‘,  in the numerical results, are 2.5, 4.3 and 4.7 for the three 
cases. The uncertainty is estimated to be about kO.01 for K’ and k0 .25  for C’. 

The second and preferred interpretation is simply that the log layer exists a t  R, 
= 670 but has disappeared a t  R, = 300. The log layer normally covers the region 
between y+ % 30 and y/S zs 0.15. The wall and wake regions begin to overlap for 
Re lower than 400, so that the local minimum of y+ dU+/dy+ is reduced to a point and 
is higher than its normal value. The results in figure 5 imply that at Re = 300, the 
Clauser-plot method yields an erroneously high ‘apparent friction velocity ’ u: if the 
decrease in K’ is ignored (u: equals u,K,,/K‘ in which u, is the true friction velocity). 
Curiously, at R, = 300 the ‘apparent log layer’ obtained by fitting a straight line 
through the inflexion point of the profile (at y+ z 40) follows the velocity profile 
closely up to a high value of y/S: about 0.35 as opposed to 0.15 normally. Purtell 
et al. (1981) also remarked on the tendency of the log layer to extend to larger values 
of y/6 a t  low Reynolds numbers. 

The ‘strength of the wake’ AU+ is defined by Coles (1962) as the maximum value 
of (U+--U&&, the deviation of the velocity profile over the log law (which occurs in 
the region near y/S = 0.8). The quantity is constant, with a value of about 3, a t  high 
Reynolds numbers when the defect law is satisfied, but decreases for values of R, 
lower than about 6000 (Coles 1962). This is a prime example of low-Reynolds-number 
effect. In  defining AU+ a t  low Reynolds number, one has to choose between the 
‘apparent’ log layer and the normal log layer ( K  = 0.41, C = 5). Furthermore, the 
value of AU+ is very sensitive to the constants used for the log layer. If C is changed 
from 5.0 (Coles 1962) to 5.2 (Murlis et al. 1982) AU+ is clearly reduced by 0.2; if K is 
changed from 0.40 to 0.41 AUf is increased by about 0.4 (at R, = 1410) which is 
about 25%. Figure 6 compares the computed values of AU+, using both definitions, 
with Coles’ curve and other experimental results by Murlis et aE. (1982) and Erm et al. 
(1985). The curve based on the apparent log law rises like the experimental curves, 
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but the trend in the other curve (based on K = 0.41, G = 5.0) is very different: it is 
essentially flat with values of about 1.4, much lower than the accepted value of 3. 
This trend was already apparent in figure 5(a ) .  Very accurate measurements or 
simulations over a wide Reynolds-number range, as well as a strong consensus on the 
value of K (at  least two significant digits), will be needed before definitive results are 
obtained for All+.  

A reliable definition of the boundary-layer thickness S is needed to express the 
results in the upper part of the flow. The definition of 6 as the point where U / U ,  
takes a given value (typically 0.99 or 0.995) is not very satisfactory. It depends on 
small differences; i t  is inconsistent with the defect law since u, depends on x. The 
situation is especially confusing a t  low Reynolds numbers since the velocity profile 
is not invariant, whether it is normalized by U, or u,. On the other hand, the shear- 
stress profile is very close to invariant when normalized by its wall value as will be 
shown. Let 7(y) be the total stress and 7(y)+ denote T ( ~ ) / T ( O )  ; T+ varies smoothly from 
1 to 0 as y varies from 0 to co . Let the 'stress thicknesses ' 6, and 6, be defined by 

roo r m  
6, = J ~ + ( y )  dy, 6, = J 7+(y) (1  -7+(y)) dy. 

0 0 

These definitions were made by analogy with the definition of the velocity 
thicknesses 6" and 8. One can define a 'stress shape factor ' H ,  5 S,/S2. For reference, 
the shape factors of a triangular and a rectangular stress distribution are 3 and +- 00, 
respectively. The Gaussian exp ( - y2) and the cubic (1 - 3y2+ 2y3), although both 
bell-shaped, give quite different values: 3.41 and 3.88. Thus H, is a rather sensitive 
measure of the shape of the stress distribution. The values of H ,  at the four stations 
of the boundary layer are about 4.0,3.9, 4.0 and 3.9 ; they are close to each other, and 
to the cubic. In  contrast the velocity shape factors, H and Clauser's shape factor 
G = (U,/u,) (H - 1 ) / H  (which was designed to be invariant), are much more sensitive 
to low-Reynolds-number effects. See figure 4(b)  for the values of H ;  G varies from 7.4 
to 6.5. This suggests using the stress, instead of the velocity, to define the thickness 
6. In  order to relate this concept to the familiar concept of S as the edge of the 
turbulent region, or of the region with mean shear, the following definition was 
adopted : 

6 = 1.856,. (10) 
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The factor 1.85 gives a good match with published values, for instance Klebanoff’s 
(1954).  This definition has the advantage of being an integral instead of a local 
quantity ; on the other hand, it applies only to the zero-pressure-gradient boundary 
layer. Figure 7 shows the shear-stress profiles plotted versus y/S. The agreement with 
Klebanoff and the collapse of the total-stress profiles are very good, thus confirming 
the behaviour of H ,  and justifying the definition of S. At y = S the velocity U I U ,  is 
equal to 0.9965, 0.9974 and 0.9977 for R, = 300, 670 and 1410 respectively. The 
corresponding values of the defect ( U ,  - U ) / u ,  are 0.065, 0.052 and 0.050. Finally, 
the values of T+ at y = 6 are 0.028, 0.026 and 0.023. Definitions of S based on any of 
these three ‘reasonable ’ candidates were tried and produced values that differ from 
(10) by up to  5% and significantly degrade the collapse of the curves in figure 7 ,  
especially between 0.58 and 0.86. 

In figure 7 the total-stress profiles heve zero slope a t  the wall, as they should since 
the flow is steady and the pressure gradient is zero, and one would naturally expect 
a parabolic behaviour for T+ near the wall. However, the profiles, a t  least for R, = 

670 and 1410, show a flat part around 0.16 with finite slope, a-r+/a(y/S) of about -0.5. 
A simple argument is outlined in the Appendix, which agrees with Townsend’s 1956 
analysis and was also mentioned recently by Li, Henbest & Perry (1986). It suggests 
that this behaviour is indeed correct, and that a t  high Reynolds numbers the total- 
stress profile approaches the wall with a finite slope of the order of -0.6, with the 
slope falling to zero only within the buffer layer (which becomes very thin compared 
with S). This finding is significant, because it means that even the zero-pressure- 
gradient boundary layer does not contain a constant-stress layer. The stress behaves 
in a manner similar to a favourable-pressure-gradient flow, and the value -0.6 is of 
the same order as the value in a channel flow, namely - 1 (defining 6 as the channel 
half-width). Again, as in the sink flow, constant-stress behaviour cannot be invoked 
to justify the existence of the logarithmic layer (Spalart 19863). 

Figure 8 shows the velocity profiles, now plotted versus y/S. In figure 8 ( a )  the 
velocity U itself is plotted and normalized by U,.  Again, experimental results a t  
R, = 617 and 1368 are plotted, and the agreement is quite good (for Erm et al.’s flow 
the following values were assumed: u7/U,  = 0.0505, S+ = 324; for Murlis et al. : u7/ 
U ,  = 0.0442, S+ = 547). In  figure 8 ( b )  the velocity defect (U  - U,) /u7  is plotted ; in 
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addition to Erm et al.'s and Murlis et al.'s results, the experimental results of 
Klebanoff (1954) a t  high Reynolds numbers are shown (assuming u,/U, = 0.0375). 
Again the agreement is acceptable but there is essentially no trend towards 
Klebanoff 's high-Reynolds-number curve, as Coles' theory would predict. The 
numerical results seem to satisfy a defect law, but one that does not quite agree with 
Klebanoff 's. Note that the results as presented in figure 8 depend on S, which is not 
firmly defined. Note also that using the apparent friction velocity u: (deduced from 
a Clauser plot) instead of the true u, to normalize (U - U,) in figure 8 ( b )  would create 
a trend towards Klebanoff's curve and thus improve the agreement with Coles' 
model. 

3.3. Streamwise evolution of the turbulence 

The behaviour of the Reynolds shear stress -(uv) is predictable. As shown in 
figure 7 the normalized total stress 7+, plotted versus y/S, varies very little with the 
Reynolds number. In  the same figure, the Reynolds shear stress -(uv)' shows a 
weak sensitivity to the Reynolds number for y+ larger than about 50. Near the wall, 
of course, the Reynolds stress falls to 0 a t  a different value of y/S depending on the 
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sublayer thickness. Figure 9 shows both stresses and the turbulent-energy production 
- (uv)+dU+/dy+ in the wall region. The stresses are rather insensitive to Reynolds 
number up to a yf of about 15, where the low-Reynolds-number profiles bend down. 
The outer region, in which the stress falls to zero, impinges on the inner region, in 
which the total stress is essentially constant. The higher-Reynolds-number Reynolds- 
stress profile agrees very well with Kim, Nine  & Reynolds’ (1968) experimental 
curve. The collapse of the production profiles is striking. They agree with each other, 
with Kim et al.’s curve, and with the theoretical profile l/Ky+ even in the region 
where the Reynolds stresses are far from collapsing. At low Reynolds numbers the 
decrease of -(uu)’ and the increase of dU+/dy+ (figure 5 )  cancel each other in the 
product to a remarkable degree. This fact cannot be explained by traditional 
arguments. 

The behaviour of the normal Reynolds stresses ( u 2 ) ,  ( u z )  and (wz) is more 
complex than that of the shear stress. The r.m.s. values of these fluctuations are 
plotted in figure 10 us. y/S, non-dimensionalized by u,, and compared with 
Klebanoff’s (1954) results. The computed curves agree with Klebanoff’s curves 
reasonably well except in the wall region, below y+ = 50, where the Reynolds- 
number difference is felt. Outside this region the curves, a t  least for u and w, show 
a moderate but consistent rise with Reynolds number. Perry, Lim & Henbest (1985, 
see also Perry, Henbest & Chong 1986) explain this rise by the lengthening of the 
inertial range towards higher wavenumbers, the low-wavenumber part of the spectra 
being independent of Reynolds number. This hypothesis is supported by figure 11. 
Power spectra of the three velocity components are shown a t  y =is, non- 
dimensionalized by u, and 6, for the R, = 300 and 1410 cases. Spanwise spectra are 
shown, as they tend to  be smoother than the streaniwise spectra. Although the 
sample is marginal for the lowest wavenumbers, the indication is that with a larger 
sample the spectra will coincide well up to  a k , 6  of about 10. 

The theory implies that by extending the inertial range to infinite wavenumbers 
one should obtain the ‘ infinite Reynolds number ’ value for each Reynolds stress a t  
each value of y/6. Such an extension would add to the stress a correction C;(uk/u,)z 
in which C; is a universal constant, uk is the Kolmogorov velocity (ve)i ,  and e is the 
dissipation rate. A value of 2.8 was assumed for C;, which is smaller than Perry’s 
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value. This will be discussed later with the spectra ($3.4). For the computed flows the 
dissipation rates were available, whereas for Klebanoff 's results the dissipation was 
estimated by scaling the dissipation computed in the R, = 1410 simulation. 
Figure 12 shows that the correction dramatically improves the collapse of the profiles, 
except for (u2)  a t  R, = 300 and near the boundary-layer edge (y/S > 0.8). In that 
region the turbulence is intermittent ; the irrotational fluctuations, which do not 
follow Kolmogorov's theory, contribute a significant part of the energy. The 
agreement with Klebanoff's corrected values is also rather good. The profiles still do 
not collapse near the wall, for y+ less than about 50, which could be expected since 
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no inertial range exists in that region. The obvious similarities between the 
deviations observed near the wall suggest a model of the type fl(y/S) +f2(y+) where 
fi is zero for y+ larger than'about 50 (one could also try a product, fl(y/S) x f2(yf)) ;  
however, there is little theoretical support for such models. 

The results in figure 12 confirm the validity of the scaling based on S and u,, and 
of Perry et al.'s viscous correction (although with different constants). The possibility 
of extrapolating moderate-Reynolds-number simulation results to higher Reynolds 
numbers using just a simple argument and one universal constant C; is very 
attractive. 

When shown in wall variables the profiles also rise with Reynolds number (figure 
13). The behaviour of w is the most striking : the rise is significant even very near the 
wall. Experimentally, Coles (1978) and Purtell et al. (1981) observed that the r.m.s. 
of u increased with Reynolds number for y+ larger than 15. Coles also reports a wide 
scatter in the w-values, but without a clear trend versus Reynolds number (1978, and 
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personal communication 1985). The results in figure 13 are in sharp disagreement 
with the concept of wall scaling (based on u, and v), a concept that  was very 
successful when applied to the mean velocity. By directly extending the arguments 
from the mean velocity to the stresses one would predict a good collapse of all curves 
in figure 13 in the log layer and, afortiori, near the wall. Note also that the viscous 
correction by C;(u,/u,)’ could not improve the collapse in figure 13 because, a t  a 
given y+, uk/u, varies very little with Reynolds number. 

Figure 14 shows the r.m.s. of the pressure fluctuations, normalized by u:. The 
bchaviour is very similar to the velocity r.m.s. : a slight rise with Reynolds number 
in the outer region but a strong rise near the wall. The wall value rises from about 
1.9 to 2.7. The agreement with Schewe’s (1983) careful measurements a t  R, = 1400 
is excellent; he obtained about 2.66. The trend is in agreement with experimental 
results reviewed by Willmarth (1975), and is consistent with Townsend’s (1976) law 
for the wall valuc, (p2) /u4  = C’ log (6’) + D  with for C‘ a valuc of about 2 .  

The vorticity intensities collapse well when plotted versus y/6 and normalized with 
the ‘mixed ’ scale (u$/Sv) i  (which is appropriate for the dissipative motion), but again 
show a significant rise with Reynolds number when plotted in wall units. This lack 
of collapse of the velocity, pressure and vorticity intensities near the wall has 
important implications for theories and turbulence models. Apparently, one cannot 
rely on a ‘law of the wall’ for these quantities as for the mean velocity and the shear 
stress. Note that the multiple-scale approximation that was made is probably most 
valid near the wall, where the natural length- and timescales are the smallest. The 
growth terms are also very small near the wall. Thus, i t  is unlikely that the surprising 
behaviour of the turbulence statistics near the wall could be due to the 
approximations that were made. 

The Reynolds-number effects in figures 13 and 14 can be interpreted in terms of 
the theory of ‘active’ and ‘inactive’ motions proposed by Townsend (1961) and 
Bradshaw (1967). This theory was initially developed to explain the observation that 
some of the triple correlations wcre Reynolds-number dependent near the wall. The 
active motion ‘produces the shear stress and its statistical properties are universal 
functions of r and y ’ ;  the inactive motion is ‘effectively irrotational’ and does not 
produce shear stress (Bradshaw 1967). The inactive motion has length- and 
timescales that are large compared with the viscous-layer scales, and is not directly 
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connected with the wall shear stress. Therefore it may not scale with u, and v 
(Townsend 1976, p. 138). 

Figure 15 identifies the lengthscales responsible for the extra energy a t  higher 
Reynolds numbers. The power spectra of the four non-zero components of the 
Reynolds-stress tensor are shown. The wavenumber and the energy are non- 
dimensionalized using wall variables (u, and v). Spanwise spectra are presented, in 
the y+ = 15 plane, for the cases R, = 300 and 1410. Figure 15 shows that as the 
Reynolds number increases, the energy of fluctuations with wavelengths less than 
about 150 wall units is not affected. In  the x-direction, only waves longer than about 
300 wall units show deviations. Thus, wall scaling is violated only by those scales of 
motion much larger than the thickness of the wall layer (roughly 50 wall units). 
These large-scale motions contribute most to (w2) and little to (v2) and - ( u v ) .  This 
agrees well with the concept of inactive motion. 

A simple model of the inactive motion is that the pressure disturbance following 
a large coherent structure, combined with the no-slip condition, create a situation 
similar to Stokes' oscillating boundary layer (Schlichting 1979). From the known 
solution to this equation one can predict the dependence of the energy on y+. If one 
takes a typical wavenumber k,f z 0.005, for which the spectra exhibit inactive 
motion, and a typical convection velocity for a large structure c+ x 15 (or O.75Um), 
one obtains a frequency n+ x 0.075. In  figure 16, the 1.111.5. profiles corresponding to 
the Stokes solution a t  n+ =0.05 and n+ =0.2  are compared with the energy 
differences found in figure 13 between the cases R, = 1410 and 670. All of the profiles 
are normalized to have the same slope a t  the wall (and therefore the same r.m.s. of 
the wall shear stress). The order-of-magnitude agreement seen in the figure lends 
support to a model based on the laminar Stokes solution with typical inactive- 
motion frequencies of the order of n+ = 0.1. Bradshaw (1967) proposed a model based 
on small quasi-steady perturbations to the turbulent velocity profile. This model 
predicts for the inactive motion an r.m.s. proportional to ( U i +  y+dU,+/dy+), where 
U,'(y+) is the usual law of the wall. This quantity is also plotted in figure 16, with the 
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FIGURE 16. Profiles of inactive-motion r.m.s. Energy difference between R, = 670 and 1410: -, 
(u"; , (wz). Stokes-layer model: +, n+ = 0.2, x , n+ = 0.05. ---, law-of-the-wall model. 

same normalization, and is seen to be much larger than the other curves except very 
near the wall. This shows that the hypothesis (implicit in Bradshaw's model) that the 
velocity profile is in equilibrium with the wall shear stress is not satisfied a t  the 
present frequencies, except within a few wall units from the wall. The perturbed-law- 
of-the-wall model may supersede the laminar model but only a t  much higher 
Reynolds number, when sufficiently low frequencies n+ carry the energy. 

The behaviour of the Reynolds stresses will now be compared with the law given 
by Townsend (1976, p. 154) and Perry et al. (1985) : 

(u')>' = B, - A ,  log , (w')>' = B, - A ,  log (11)  

This law is thought to apply only in the fully turbulent region and a t  sufficiently high 
Reynolds numbers (as already mentioned, Perry et al. also proposed a viscous 
correction to extend this law to lower Reynolds numbers). The law implies that the 
stresses depend only on y/6, which was well verified (after viscous correction, see 
figure 12). In  contrast, a t  a fixed value of yf a term proportional to log (6uJv)  enters 
the formula for (u2) and (w2) (but not (v2) or (uv)). The results in figure 13 are 
quite consistent with this; notice the much smaller rise of (v2> (especially considering 
that r.m.s. values are shown; the convexity of the square-root function would 
enhance the variation of the v-intensity compared with the u- and w-intensities). 
Equation (11) predicts constant profiles in figure 16, which is consistent since it 
applies only outside the region affected by the no-slip condition. 

Figure 17 shows another test of ( l l ) ,  comparing the y-dependence of the corrected 
RB = 1410 results with the logarithmic behaviour predicted by ( I l ) ,  using A ,  = 1.1 ,  
A ,  = 0.66, A ,  = 1.75, B, = 2.0 and B, = 1.1 .  The first two values were chosen after 
inspection of the spectra ($3.4); the last three were chosen empirically. Perry et al. 
(1985) give slightly different values: A ,  x 1.5 to 1.9, B, = 2.48, B, = 1.12. The 
agreement in figure 17 is moderately good (recall that the wall region, y+ < 50, y/ 
6 < 0.075, should be excluded, and that the slope of the straight lines was not 
adjusted to obtain the best agreement). Because of the insufficient Reynolds number, 
the present data cannot provide a definitive confirmation of ( l l ) ,  but they are 
consistent with it as shown in figures 12, 13 and 17.  
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FIGURE 17. Reynolds stresses, extrapolated from R, = 1410 to CO. -, (uz)+; ~~- > (v2)+; 
, (wz)+; 0 ,  computed values; A, equation (11). 

An unexpected implication of (1 1) is that a t  a given value of y f ,  the stresses (u2)+ 
and (w2)>’ not only depend on the Reynolds number, but even tend to 00 like 
log (P) as the Reynolds number tends to co (however, the log-layer overlap condition 
requires log (Sf) = U,/u,+B, where B is a constant, so that (u2)>lUZ, and (w2)>lUk 
still tend to 0). Such a behaviour has not been indicated by experiments, but 
measurements in the wall layer at very high Reynolds numbers are difficult and may 
not be accurate enough to reveal a slow, logarithmic divergence. Direct simulations 
a t  Reynolds numbers higher than the present ones have not been conducted. 
Presumably, as the Reynolds number increases, the added energy will be independent 
of y+ away from the wall and ‘damped’ by a factor similar to the ones in figure 16 
near the wall. This damping will extend to higher values of y+ as the frequency n+ 
decreases so that the effect a t  a y+ of 10, for instance, will be less than in the log layer. 
As a result, the shape of the Reynolds-stress profiles near the wall will be 
progressively altered ; for instance the peak value of ( u 2 ) +  will be displaced from its 
usual location into the log layer. In  Klebanoff’s (1954) measurements a t  R, x 7500, 
the peak value of the r.m.s. of u+ is about 2.98 and occurs a t  yf x 22. These values 
are significantly higher than the accepted values, which are about 2.7 and 13. 
Finally, note that the diagonal elements of the Reynolds-stress tensor can tend to CQ, 

compared with the off-diagonal elements, without violating the condition of 
realizability. The correlation coefficients simply tend to 0. 

Another implication of the theory is that in (11) the constants B, and B, are not 
universal, so that the Reynolds stresses a t  a fixed y+ depend not only on P ,  but also 
on the type of flow : e.g. boundary-layer, pipe and channel (the definition of 6 is also 
flow-dependent). Thus (11) conflicts in many ways with the concept of a law of the 
wall for the Reynolds stresses. Bradshaw (1967) used his quasi-steady perturbation 
model to show that the mean-velocity profile has very little sensitivity to the inactive 
motion, which could explain why it does not deviate appreciably from the law of the 
wall. 

The flow structures a t  different Reynolds numbers were examined in relation with 
the failure of the law of the wall for some of the statistical quantities. Figures 18 and 
19 show contours of constant vorticity magnitude at R, = 300 and 1410, normalized 
by (u,3/Sv)i (recall that this normalization yielded a collapse of the vorticity r.m.s. a t  
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different Reynolds numbers). Cross-sections of the flow by a streamwise plane, a 
vertical spanwise plane and oblique planes a t  f 45” are taken in the manner of Falco 
(1977) and Head & Bandyopadhyay (1981). Similar figures were obtained from 
numerical simulations in channels (e.g. Deardorff 1970; Schumann 1975; Moin & 
Kim 1982). Note the depth of the irrotational ‘valleys’ and the sharpness of the 
irrotational-rotational interface (compared with the boundary-layer thickness), 
especially at the higher Reynolds number. This suggests that the entrainment 
process is a t  least qualitatively reproduced within the multiple-scale approximation 
(essentially because V is negative: V x -0.025Um a t  y = 6). Note also the absence of 
numerical oscillations in the irrotational region, as could be caused by inadequate 
resolution. The figures show that the ‘typical eddies’ are smaller (relative to the 
boundary-layer thickness) a t  higher Reynolds number, in agreement with ex- 
periments. There is some similarity between the present results and Head & 
Bandyopadhyay’s smoke photographs, but the numerical results are far from being 
as convincing regarding the presence of hairpin vortices (except maybe the right end 
of figure 18c and the left end of figure 19c). It is also difficult to ascertain that the 
eddy scales in figures 18 and 19 are exactly the same in wall units, as Head & 
Bandyopadhyay’s model implies. One possible problem with visualizing the 
numerical results is that the Navier-Stokes solver uses spectral interpolation, while 
the graphics program uses linear intwpolation which is cruder. 

3.4. Analysis of the spectra 
The R, = 1410 case is used for a more detailed study in order to minimize the low- 
Reynolds-number effects. In  a wall-bounded flow, wavenumbers can be non- 
dimensionalized in at least four ways; one can use the Kolmogorov lengthscale 1, = 
(v3/s)g, the wall lengthscale v/u,, the distance from the wall y, or the thickness of the 
boundary layer, S. The presentation of the results makes use of the different 
normalizations and owes much to Perry et al.’s work (1985, 1986). Their theory is 
based on certain assumptions about the shape of the eddies, and on dimensional 
analysis. Bradshaw (1967) also presented a theory based on dimensional analysis. 
Perry et al. tentatively define the ‘fully turbulent region’ by y+ > 100, y /6  < 0.15. 
Partly because of the moderate value of the Reynolds number, a less conservative 
definition was adopted here : y+ > 50, y/S < 0.3. 

Figure 20 shows spectra with Kolmogorov scaling. The maximum non-dimensional 
wavenumbers kl, are about 0.3 and 0.8 in the x- and x-directions, respectively. The 
values of yf are 100 and 200 (recall that 6+ x 660). The spectra from the two planes 
collapse quite well for k1, larger than about 0.05. Deviations appear at the highest 
wavenumbers, probably because of numerical truncation ; there is even a slight 
turnup of the z-spectra. In the x-direction, the spectrum of (u’) has a significant 
inertial range, about half a decade. For the other components, the inertial ranges are 
insignificant. The Kolmogorov constant was computed as the maximum of E ( k )  ki. 
As for the log layer, this definition has the advantage of being rigorous, but one 
should expect the Kolmogorov constants to be slightly overestimated especially if 
the spectra are noisy. The value for (u’) is 0.5510.05, which is in good agreement 
with the accepted value of about 0.5 (Townsend 1976). The transverse Kolmogorov 
constants are 0.62 and 0.7, with similar uncertainties, for (v’) and (w2), respectively. 
Recall that in isotropic turbulence, the transverse Kolmogorov constants are larger 
than the longitudinal one by a factor of Q. 

The behaviour of the z-spectra (figire 20b) is similar to the x-spectra for kl, larger 
than 0.1, but for lower wavenumbers no inertial range is found. The spectra do not 
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FIGURE 20. Spectra, Kolmogorov scaling. (a) 2-direction ; (b) z-direction. -, (u') ; ---, (uz )  ; 
, (w". 0, y + =  100; 0, y + =  200. 

remain tangent to a k-; law; instead they peel off for k z l k  lower than about 0.05. 
Furthermore, the Kolmogorov constants, defined as before, deviate from the 
accepted values more than in the x-direction: they are about 1.4, 0.7 and 0.6 for 
<u2), (v2) and (w2), respectively. It seems that a much higher Reynolds number is 
needed for the inertial-range behaviour to be set in the z-direction. 

Figure 21 shows a test of the isotropy of the small scales. The one-dimensional 
spectra of an isotropic field satisfy E ,  = E, = ~(El-kldEl/dkl) where k ,  is the 
wavenumber, El the spectral density in that direction and E ,  and E, the densities in 
the transverse directions (Townsend 1976). These three quantities are compared in 
figure 21, in the 2-direction; the x-direction spectra show the same trend but are 
noisier. In figure 21 ( a ) ,  with y* = 200, the small scales are seen to satisfy the isotropy 
conditions rather well for k ,  1, larger than about 0.1. In  contrast, in figure 21 (b ) ,  with 
y' = 40, the spectra do not show isotropy. A similar test was conducted by Klebanoff 
(1954). The lack of isotropy of even the small scales near the wall is explained by the 
fact that the macroscales of the turbulence, namely y and v/u,, are not much larger 
than the Kolmogorov scale I,. 

In theory, the spectra allow computation of the value of the constant C; ($3.3). As 
presented by Perry et al. (1985, 1986) the correction is Cl/(y+)i, ($)C,/(y+)i and 
($)C,/(y+)i for (u2)+, (v2)+ and (w2)+, respectively. It seems disturbing that this 
correction is not isotropic. To obtain the $ factor, one needs to restrict one's attention 
to streamwise spectra, and to make the non-trivial assumption that the transverse 
spectral densities equal t times the longitudinal spectral density even in the viscous 
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FIGURE 21. Spectra, Kolmogorov scaling, test of local isotropy. (a )  y+ = 200; ( b )  y+ = 40. -, 

peel-off range. This assumption is not compatible with the equation E ,  = E ,  = 
~(E,-k,dE,/dk,) and the fact that in that range, dE,/dk, < ( -g)El/kl. In fact, 
using the isotropy equation, one can easily show that the integral is the same for the 
three velocity components. For the present study (including figure 12) it was decided 
to discard the $ factors. 
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FIGURE 23. Spectra, normalized using y. (a) ,  ( b )  2-direction; (c), (d )  z-direction. -, (u ' ) ;  ---, 
(VZ) ; ---, (zu');.. . ,-(uv) . O , y + = 5 0 ;  O , y + = l O O ; A , y + = 2 0 0 .  

The values of the constants C, and Cl, are not easy to establish. They are related 
by C, = C;/(K);  since in the constant-stress layer c+ = l / ( ~ y + ) .  Perry et al. quote 
C ,  = 6.08, which implies Ci M 3.9. They obtained this value by setting the spectrum 
to 0 beyond a peeloff wavenumber kl, = M ,  which could yield a rather crude over- 
estimate of the energy difference; M is also ill-defined. From the spectra in figure 
20(b) ,  one obtains the estimate C; x 2. However the spectra are thought to be 
somewhat inaccurate (too high) near the numerical cutoff, and the value of the 
Kolmogorov constant is not firmly established, so that this estimate is not very 
reliable either. To obtain a reliable estimate one would probably need a simulation 



90 

0.02 - 

P. R. Xpalart 

........... ......... .......... ........... ..... .... ...... 
__.. 

-0.5 
0 10 20 30 40 so 

Y +  

-0.04 I I I I I 
0 10 20 30 40 so 

Y +  

(c )  0.15 

0.05 

0 

-0.05 

-0.15 

__- - - -  -- - 

-_-- 
p------- 

I 

I I I I 1 
10 20 30 40 so 

Y+ 

FIGURE 24(a-c).  For caption see facing page. 
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FIGURE 24. Reynolds-stress budget terms near wall. Normalized by u,"/v. (a) u2 ; ( b )  v2 ; (c) w2 ; (d) 
-uv ; ( e )  u2 + v2  + w2. -0-, production ; -, turbulent diffusion ; ---, viscous diffusion ; ---, 
dissipation; ..., pressure. 

that exceeds the Kolmogorov wavenumber in all directions, and shows a convincing 
inertial rt,lge. Studies by Grant and Pao (see Hinze 1975) suggest values of about 5 
and 3.4, respectively. The value (2; = 2.8+0.2 was obtained empirically by 
optimizing the collapse of the profiles in figure 12. 

In figure 22, S is used as a lengthscale. Perry et al. (1985) predict that for low 
wavenumbers (k, 6 less than about 3), the spectra from different horizontal planes 
will collapse for u and w, but not v. Although the spectra are noisy especially a t  low 
wavenumbers, figure 22 shows encouraging agreement with the theory. The collapse 
is good for u in both directions and rather good for w. The v-spectra are higher for 
higher values of y, especially in the z-direction. The agreement with the experimental 
spectra of Bradshaw (1967) and Perry et al. (1985) is good for k, S larger than about 
1. However for lower wavenumbers, the computed spectra do not level off like the 
experimental spectra. This is especially apparent for the spectra of u. Each set of 
data has its own sources of error. The experimenters converted frequency spectra 
into spatial spectra using Taylor's hypothesis, which is least valid for low 
wavenumbers (see Perry et al.'s discussion of the errors involved). The simulations 
directly yield spatial spectra, so these errors are avoided. On the other hand, the 
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FIGURE 25. Reynolds-stress budget terms away from the wall. Normalized by u,3/S. (a) u2; ( b )  v2; 
( e )  w2; (d )  -uv ; ( e )  u2 + v2 + w2. -0-, production ; -, turbulent diffusion ; ---, growth terms ; 
_ ~ _  , dissipation ; ..., pressure. 

multiple-scale approximation may be showing its limitations here. In a true 
spatially-developing flow, the incoming flow has a smaller thickness and therefore the 
long waves are less energetic. Since this effect is suppressed by the approximations 
that were made one would expect the energy of the long waves to be slightly over- 
predicted, which is what the comparison between figure 22 and the experimental 
results suggests (the crude treatment of the straining effects, discussed in 52.2, could 
also play a role). 

Finally figure 23 shows the spectra normalized with y as the lengthscale. This 
scaling provides the richest behaviour in Perry et al.’s (1985) theory : a collapse of 
spectra from different values of y, with a pivot point a t  k, y of the order of 1,  a E i l  
range on the left (except for v which is expected to be constant), and the k$ range 
on the right. Experimental results generally confirm this picture (Klebanoff 1954 ; 
Perry et al. 1985). In  figure 23, segments with slope - 1 and -$ are tentatively drawn 
on all the plots. In  the x-direction, the results show a good collapse on the right of 
the pivot, with the curves corresponding to  lower values of y peeling off first. The 
degree of agreement with a k-i law was discussed earlier. In  the z-direction the 

4-2 
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collapse, like the k-g behaviour, may be prevented by the insufficient range of scales. 
However, there is no reason why the theory should not apply to spanwise spectra. 

On the left of the pivot, the collapse and the agreement with the k-l model are 
convincing only for (u2 )  and ( - u v ) ,  in the x-direction. A conclusive check of the 
theory is made difficult by the statistical noise, the finite values of the periods A ,  and 
Az ,  and the limited range of scales due to the moderate value of the Reynolds 
number. From figure 23 one can estimate the constants multiplying 12,’ for the 
various components. For ( - u v ) ,  it is 0.18, which is in excellent agreement with 
Klebanoff’s (1954) measurements. Using Perry et aZ.’s notation, the computed values 
(which are probably slightly overestimated) are: for u, A ,  = 1 . 1 ;  for w, A ,  = 0.66. 
These constants entered (11)  (in fact (11)  is a direct consequence of the existence of 
a k-l range). Perry et al. (1985, note that their values are switched in their table 1) 
quote A ,  = 1.03, A ,  = 0.73. In a pipe flow Perry et al. (1986) measured A ,  = 0.90; 
Klebanoff (1954) obtained A ,  % 0.85. These constants are thought to  be universal. 
The agreement between measured and computed values is acceptable. 

3.5, Reynolds-stress budget equations 
The various terms in the budget of the four non-zero Reynolds stresses are shown in 
figure 24, near the wall, and in figure 25 away from the wall. The contribution of the 
growth (or advection) terms is negligible near the wall (recall that I‘ is zero in that 
region) and becomes noticeable only for y/6 larger than about 0.5. Conversely, the 
viscous diffusion is negligible for yf > 25. The terms sum up to 0 very well near the 
wall; in the outer region the residuals are less than 0.5 in the units of figure 25. As 
expected the near-wall behaviour is similar to that observed in a channel flow (Moser 
& Moin 1984). As the Reynolds number increases, there is a weak trend for most of 
the quantities in figure 24 to increase. Furthermore, there is a very noticeable 
enhancement (up to 20% increase from R, = 300 to 1410) of the dissipation and of 
the viscous diffusion for y+ smaller than about 10 (as part of the inactive-motion 
theory Bradshaw (1967) predicted that the dissipation and the turbulent diffusion 
would be enhanced). Since the inactive motion has long timescales, one expects it to 
contribute relatively less to the energy budget than to the energy itself. The 
enhancement of the viscous diffusion is of course linked to the increase of the 
Reynolds stresses, seen in figure 13. The profiles in figure 24 should be considered as 
representative, but not as universal. 

In figure 25 the terms are normalized by u,3/6. Again, one should not take the 
results as universal. At higher Reynolds numbers the dissipation tensor slowly 
becomes more isotropic. This evolution of the dissipation terms is compensated for 
by the pressure terms and the turbulent-diffusion terms, in roughly equal parts. Note 
that numerical truncation, by suppressing small-scale structures, tends to artificially 
increase the anisotropy of the dissipation tensor; the refined simulation that was 
done at  R,, = 500 showed slightly less dissipation-tensor anisotropy than the basic 
simulation. For the shear stress, the production and pressure terms both increase 
significantly with Reynolds number. Thus unless it explicitly includes low-Reynolds- 
number effects, a turbulence model should not be expected to match the present 
results very closely. For the total energy, the production and the dissipation are in 
balance over most of the boundary layer ; but for separate components, the pressure 
term is often significant. For y/6 between about 0.5 and 1.2, the turbulent-diffusion 
and growth terms become important. In  this flow the contribution of the growth 
terms to the Reynolds-stress budget is consistently negative. 
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4. Conclusions 
Direct numerical simulations of the turbulent boundary layer on a flat plate were 

performed a t  four Reynolds numbers, including a value significantly larger than in 
any previous direct simulations. A systematic multiple-scale procedure was used to 
approximate the local effects of the streamwise growth of the flow. The numerical 
truncation errors were shown to be much smaller than the relevant variations of the 
results. In general the agreement with experimental results was good. The most 
significant discrepancy is in the friction coefficient a t  the highest Reynolds number ; 
the computed value is too large by about 5 %. 

The mean-velocity and shear-stress profiles behaved as predicted by Coles, except 
for the strength of the wake. At very low Reynolds numbers, R, less than about 600, 
the logarithmic layer disappears, and the Clauser-plot method yields incorrectly high 
values of the friction velocity. A definition of the boundary-layer thickness S as an 
integral of the total shear stress was introduced, and produced a very good collapse 
of the stress profiles from different Reynolds numbers. The total stress appears to 
approach the wall with a finite slope, in contrast with the parabolic behaviour that 
is usually assumed. The other Reynolds stresses also collapsed very well, away from 
the wall, after a variant of Perry’s viscous correction was applied. When the 
boundary-layer thickness S is used as a length scale, the energy of the small-scale 
motion increases with Reynolds number. 

The main result of the paper is that near the wall the normal Reynolds stresses 
(u2)  and (w2), unlike the mean velocity and the shear stress, do not collapse when 
normalized with u and u,. The pressure and vorticity intensities do not collapse either. 
Instead, they all show a strong tendency to increase with Reynolds number, 
consistent with Townsend and Perry’s theories. The lack of collapse extends all the 
way to the wall. The theories even predict that the stresses a t  fixed y+ tend to infinity 
like the logarithm of the outer-flow Reynolds number, and that they depend on the 
type of outer flow. When the wall lengthscale v /u ,  is used, the large-scale motion is 
responsible for the increased energy. The waves fit the description of ‘inactive 
motion’ given by Townsend and Bradshaw. A simple model based on an oscillating 
near-wall layer predicted the proper trend for the stress variation with Reynolds 
number, but a convincing quantitative extension of the theories into the wall region 
remains to be found. 

The spectra showed encouraging agreement with various theories, including 
Kolmogorov’s and Perry’s, and yielded satisfactory values for most of the universal 
constants. Extensive data were provided for the development of turbulence models 
both near the wall and in the outer region, and the Reynolds-number dependence of 
the major terms was discussed. The anisotropy of the dissipation tensor was found 
to be significant even a t  the highest Reynolds number reached. 

The author had useful discussions with Drs J. Kim, N. Mansour, P.  Moin, R.  
Rogallo and A. Wray (NASA Ames Research Center), and with Professor P.  
Bradshaw (Imperial College, London). Dr Mansour reviewed the manuscript. 
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Appendix 
We examine the classical two-layer model of the flat-plate turbulent boundary 

layer (Townsend 1956, p. 229), especially the local momentum equation. The 
assumptions are, near the wall: 

Uf = f(y+), 7+ = 1, (A 1 a ,  6 )  

for some non-dimensional functions f, g and h. The boundary-layer momentum and 
continuity equations are 

a7 uux+ vuu = -, u,+ v, = 0. 
aY 

In the wall region, which includes the log layer, the momentum equation becomes 
(after some algebra and using continuity) : 

Strictly speaking this contradicts (A 2 6 ) ,  because the right-hand side of (A 4) is not 
just a function of y/6. Is it compatible with a parabolic behaviour of g, in particular 
as the Reynolds number tends to co '1 When this happens 6uTZ/uT tends to 0 and f 
tends to co (at fixed y/6); we therefore need better estimates. We shall use the 
overlap condition and the total-momentum equation. 

Equations (A l a )  and (A 2a) overlap in the log layer. By differentiating the 
overlap condition with respect to x, we obtain (Coles 1956) 

The total-momentum equation is d0/dx = uq/U2,. Using (A l a )  and (A 2a) we 
obtain 

for some constants D, x 3.9, D2 x -24, D, x 52 and D,. Clauser (1954) gives the 
value 3.6 for D, ( A  in his notation). 

We compute d0/dx, neglecting the last term in (A 6) which is very small, and using 
(A 5 )  to eliminate 6,: 

1 
KD,-(I-K)- D, ur) (g) ' 

u, 
so that (A 4) becomes h' = - 

We consider a fixed value of y/S (but within the log layer) and let the Reynolds 
number tend to 00. The ratio uT/U, tends to 0 and U I U ,  tends to 1.  Therefore the 
leading term is - l/(,D1) ( x -0.6) and is a constant. This means that up to the edge 
of the log layer 7+(y) has a flat part with finite slope -0.616. Townsend (p. 255, 1956 
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edition) obtains the same behaviour, with slope about - 0.5. Curiously, he removed 
this result for the 1976 edition. Li et al. (1986) also obtained (A 8); they outline a 
derivation which is most probably equivalent to the one given here. At moderate 
Reynolds numbers, both factors in (A 8) get smaller. Klebanoff’s 1954 results and the 
present results show about -0.5 for h’ up to y / 6  x 0.2. 
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